

Pergamon

TETRAHEDRON
LETTERS

Tetrahedron Letters 40 (1999) 5287–5290

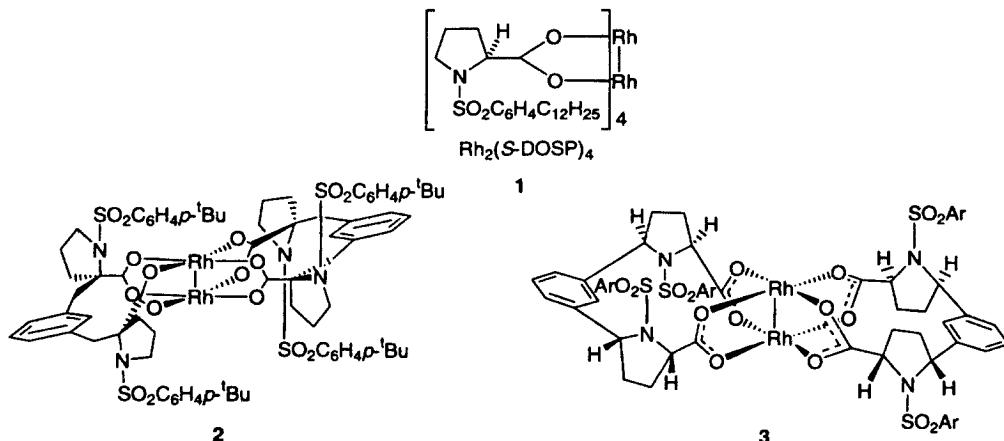
Novel dirhodium tetraprolinate catalysts containing bridging proline ligands for asymmetric carbenoid reactions

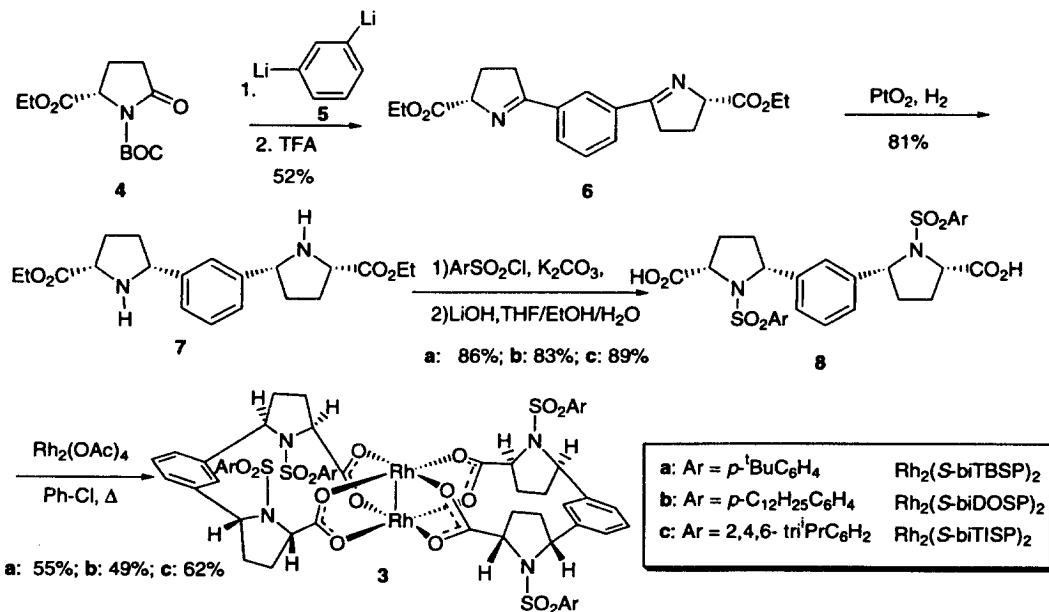
Huw M. L. Davies * and Stephen A. Panaro

Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA

Received 7 April 1999; revised 17 May 1999; accepted 18 May 1999

Abstract


The D_2 -symmetric dirhodium proline complex **3** is an effective catalyst for asymmetric vinylcarbenoid and phenylcarbenoid cyclopropanations. © 1999 Elsevier Science Ltd. All rights reserved.


Rhodium(II) prolinates, such as $\text{Rh}_2(S\text{-DOSP})_4$ (**1**), have been shown to be excellent chiral catalysts for asymmetric cyclopropanation (up to 98% ee) by vinyl diazoacetates¹ and phenyl diazoacetates.² A predictive model has been presented to rationalize the asymmetric induction caused by $\text{Rh}_2(S\text{-DOSP})_4$.^{1c} In this model the complex is considered to exist in a D_2 -symmetric conformation in which the arylsulfonyl groups preferentially align in an up-down-up-down arrangement. In order to test this model, the dirhodium tetraprolinate catalyst **2** was evaluated.³ In **2**, pairs of prolinates are tethered at the C-2 position, which forces the arylsulfonyl groups to align in an up-down-up-down arrangement. Complex **2** performed as a reasonable chiral catalyst resulting in cyclopropanation of up to 83% ee, but was inferior to $\text{Rh}_2(S\text{-DOSP})_4$ as a chiral catalyst.³ In this communication, we describe the synthesis of a new series of bridged proline complexes **3**, tethered at the C-5 position. This new class of catalyst offers a major advantage over $\text{Rh}_2(S\text{-DOSP})_4$ because it can achieve high asymmetric induction in reactions carried out in non-hydrocarbon solvents, which is not the case with $\text{Rh}_2(S\text{-DOSP})_4$.^{1c}

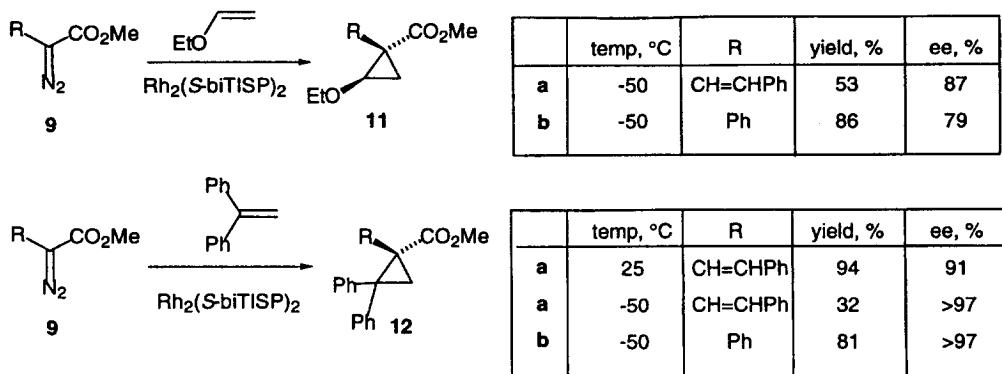
* Corresponding author.


The direct synthetic strategy that was used to prepare **3** is shown in Scheme 1. The key step is alkylation of (*S*)-pyroglutamate derivative **4**⁴ with 1,3-dilithiobenzene (**5**)⁵ to form the bis-imine **6**. It is well established that the reaction of **4** with aryl Grignard reagents followed by reduction is an effective method to prepare *cis*-5-arylproline derivatives.⁶ Platinum(IV) oxide catalyzed hydrogenation of **6** generated the bis-proline **7**, with an overall 42% yield from the pyroglutamate. Treatment of **7** with arylsulfonylchlorides, followed by saponification generated bis-sulfonated ligands **8**, which were readily incorporated into the dirhodium complex **3** by a ligand exchange reaction using Rh₂(OAc)₄. The HRMS FAB data indicated that the dirhodium complexes **3** contain two of the bridged ligands.⁷ Furthermore, due to the bridging nature of the ligands, the arylsulfonyl groups are forced to adopt an up-down-up-down arrangement, generating a complex of *D*₂ symmetry.

Scheme 1.

A comparative study of the new-bridged catalysts **3** with Rh₂(*S*-DOSP)₄ and the original bridged catalyst **2** is summarized in Table 1. The standard reaction that was used for this comparative study was the cyclopropanation of styrene by the vinyl diazoacetate **9a**. One of the most distinctive features

Table 1
Asymmetric cyclopropanation of styrene using rhodium(II) proline catalysts



solvent	temp, °C	%ee for the formation of 10 by Rh(II) catalysts				
		$\text{Rh}_2(\text{S}-\text{biTBSP})_2$	$\text{Rh}_2(\text{S}-\text{biDOSP})_2$	$\text{Rh}_2(\text{S}-\text{biTISP})_2$	$\text{Rh}_2(\text{S}-\text{DOSP})_4$	2
<i>n</i> -alkane	25	55 (<i>S,S</i>)	53 (<i>S,S</i>)	74 (<i>S,S</i>)	90 (<i>R,R</i>) ^{1c}	56 (<i>S,S</i>) ³
CH_2Cl_2	25	63 (<i>S,S</i>)	68 (<i>S,S</i>)	90 (<i>S,S</i>)	74 (<i>R,R</i>) ^{1c}	59 (<i>S,S</i>) ³
CH_2Cl_2	-50	—	—	98 (<i>S,S</i>)	88 (<i>R,R</i>)	83 (<i>S,S</i>) ³

of $\text{Rh}_2(\text{S-DOSP})_4$ catalyzed reactions is that they exhibit higher enantioselectivity when carried out in hydrocarbons such as hexane or pentane rather than CH_2Cl_2 as solvent. In the case of the bridged catalysts **3**, the opposite is seen in each case with the highest enantioselectivity being obtained when CH_2Cl_2 is used as solvent. The structure of the arylsulfonyl substituent has a fairly limited effect on the asymmetric induction for the tetraprolinate catalysts related to $\text{Rh}_2(\text{S-DOSP})_4$.^{1c} However, for the bridged catalysts **3**, the arylsulfonyl group has a major effect with the 2,4,6-triisopropylphenyl derivative, $\text{Rh}_2(\text{S-biTISP})_2$ (**3c**), resulting in the highest asymmetric induction. Reaction of **9a** with $\text{Rh}_2(\text{S-biTISP})_2$ in the presence of styrene at -50°C in CH_2Cl_2 resulted in the formation of the cyclopropane **10** in 98% ee.⁸ One of the most intriguing features of both series of bridged catalysts **2** and **3** is that the asymmetric induction in their reactions is opposite to that observed with $\text{Rh}_2(\text{S-DOSP})_4$. The most reasonable explanation for this effect at this stage is that the carbenoid binds in a different staggered orientation in **2** and **3** compared to $\text{Rh}_2(\text{S-DOSP})_4$.

Two illustrative examples of the synthetic utility of $\text{Rh}_2(\text{S}-\text{biTISP})_2$ are shown in Scheme 2. Reaction of the vinyl diazoacetate **9a** or the phenyl diazoacetate **9b** with ethyl vinyl ether, catalyzed by $\text{Rh}_2(\text{S}-\text{biTISP})_2$, resulted in cyclopropanation to form **11a** (87% ee) or **11b** (79% ee). Reaction of **9a** or **9b** with diphenylethylene, catalyzed by $\text{Rh}_2(\text{S}-\text{biTISP})_2$, resulted in cyclopropanation to form **12a** or **12b** in >97% ee. In each case, the asymmetric induction is comparable but opposite to that obtained with $\text{Rh}_2(\text{S}-\text{DOSP})_4$.^{1e,d} Further studies are in progress to determine the range of utility of $\text{Rh}_2(\text{S}-\text{biTISP})_2$ in asymmetric cyclopropanation, Si-H insertions⁹ and C-H insertions¹⁰ of vinyl diazoacetates^{1,11} and phenyl diazoacetates.²

In summary, the demonstration that the rigid bridged proline complex, $\text{Rh}_2(\text{S}-\text{biTISP})_2$ (3c), is an excellent catalyst for asymmetric cyclopropanation adds further support to the concept that the efficiency of $\text{Rh}_2(\text{S}-\text{DOSP})_4$ as a chiral catalyst is due to the arrangement of the ligands in a D_2 -symmetric arrangement. The binding of identical low symmetry ligands around a central core to form complexes of high symmetry is an exciting new approach for chiral catalyst design. $\text{Rh}_2(\text{S}-\text{biTISP})_2$ is expected to be of great utility in the emerging field of vinyl diazoacetate and phenyl diazoacetate transformations because it can achieve high asymmetric induction in reactions carried out in non-hydrocarbon solvents, which was not the case for $\text{Rh}_2(\text{S}-\text{DOSP})_4$.

Scheme 2.

Acknowledgements

Financial support of this work by the National Science Foundation (CHE 9726124) is gratefully acknowledged.

References

- (a) Davies, H. M. L.; Hutcheson, D. K. *Tetrahedron Lett.* **1993**, *34*, 7243. (b) Davies, H. M. L.; Peng, Z. Q.; Houser, J. H. *Tetrahedron Lett.* **1994**, *35*, 8939. (c) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. *J. Am. Chem. Soc.* **1996**, *118*, 6897. (d) Corey, E. J.; Gant, T. G. *Tetrahedron Lett.* **1994**, *35*, 5373. (e) Moye-Sherman, D.; Welch, M. B.; Reibenspies, J.; Burgess, K. *Chem. Commun.* **1998**, 2377.
- (a) Davies, H. M. L.; Bruzinski, P. R.; Fall, M. J. *Tetrahedron Lett.* **1996**, *37*, 4133. (b) Doyle, M. P.; Zhou, Q.-L.; Charnsangavej, C.; Longoria, M. A.; McKervey, M. A.; Garcia, C. F. *Tetrahedron Lett.* **1996**, *37*, 4129.
- Davies, H. M. L.; Kong, N. *Tetrahedron Lett.* **1997**, *38*, 4203.
- (a) Adkins, H.; Billica, H. B. *J. Am. Chem. Soc.* **1948**, *70*, 3121. (b) Ezquerra, J.; Pedregal, C.; Rubio, A.; Yruretagoyena, B.; Escribano, A.; Sanches-Ferrando, F. *Tetrahedron* **1993**, *49*, 8665.
- Fossatelli, M.; den Besten, R.; Verkrijsee, H. D.; Brandsma, L. *Rec. Trav. Chim. Pays-Bas* **1994**, *113*, 527.
- Fournie-Zaluski, M.; Coric, P.; Thery, V.; Gonzalez, W.; Meudal, H.; Turcaud, S.; Michel, J.; Roques, B. *J. Med. Chem.* **1996**, *39*, 2594–2608.
- Spectral data for 3c: IR (NaCl) 2966, 2929, 2871, 1603, 1417, 1321, 1161 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.10 (s, 8H), 6.97 (t, 2H, *J*=7.4 Hz), 6.81 (d, 4H, *J*=8.4 Hz), 6.80 (s, 2H), 4.63 (t, 4H, *J*=8.2 Hz), 4.39 (d, 4H, *J*=7.6 Hz), 3.47 (sept, 8H, *J*=6.4 Hz), 2.96 (sept, 4H, *J*=6.8 Hz), 2.41 (dd, 4H, *J*=12.2, 6.0 Hz), 2.24–2.14 (m, 4H), 2.14–2.00 (m, 4H), 1.76–1.63 (m, 4H), 1.31 (d, 12H, *J*=6.8 Hz), 1.29 (d, 12H, *J*=6.8 Hz), 1.05 (d, 24H, *J*=6.8 Hz), 0.94 (d, 24H, *J*=6.0 Hz); ¹³C NMR (300 MHz, CDCl₃) δ 190.5, 153.1, 151.4, 141.6, 130.5, 127.1, 127.0, 124.7, 123.6, 64.7, 62.3, 34.9, 34.0, 29.3, 27.8, 25.0, 24.6, 23.5, 23.5; HRMS (FAB) calcd for C₉₂H₁₂₅N₄O₁₆S₄Rh₂ (*m*+*H*)⁺: 1875.6084, found (*m*+*H*)⁺: 1875.6076.
- General procedure for Rhodium(II)-catalyzed decompositions of diazo in the presence of alkenes:** a solution of the diazo compound (0.5 mmol, 1 equiv.) in CH₂Cl₂ (10 mL) was added over 1–2 h to a stirred solution of the alkene (5.0 equiv.) and Rh(II) catalyst (0.01 equiv.) in CH₂Cl₂ (5 mL) at -50°C under an argon atmosphere. The mixture was then stirred for 24 h at -50°C and then warmed to rt. The mixture was concentrated in vacuo and the residue was purified on silica using ether/petroleum ether as the eluent.
- Davies, H. M. L.; Hansen, T.; Rutberg, T.; Bruzinski, P. R. *Tetrahedron Lett.* **1997**, *38*, 1741.
- Davies, H. M. L.; Hansen, T. *J. Am. Chem. Soc.* **1997**, *119*, 9075.
- (a) Davies, H. M. L.; Stafford, D. G.; Houser, J. H.; Doan, B. D. *J. Am. Chem. Soc.* **1998**, *120*, 3326. (b) Davies, H. M. L.; Kong, N.; Churchill, R. *J. Org. Chem.* **1998**, *63*, 6586.